Pure optical photoacoustic microscopy
نویسندگان
چکیده
The concept of pure optical photoacoustic microscopy(POPAM) was proposed based on optical rastering of a focused excitation beam and optically sensing the photoacoustic signal using a microring resonator fabricated by a nanoimprinting technique. After the refinements of the microring's working wavelength and in the resonator structure and mold fabrication, an ultrahigh Q factor of 3.0×10(5) was achieved which provided high sensitivity with a noise equivalent detectable pressure(NEDP) value of 29 Pa. This NEDP is much lower than the hundreds of Pascals achieved with existing optical resonant structures such as etalons, fiber gratings and dielectric multilayer interference filters available for acoustic measurement. The featured high sensitivity allowed the microring resonator to detect the weak photoacoustic signals from micro- or submicroscale objects. The inherent superbroad bandwidth of the optical microring resonator combined with an optically focused scanning beam provided POPAM with high resolution in the axial as well as both lateral directions while the axial resolution of conventional photoacoustic microscopy (PAM) suffers from the limited bandwidth of PZT detectors. Furthermore, the broadband microring resonator showed similar sensitivity to that of our most sensitive PZT detector. The current POPAM system provides a lateral resolution of 5 μm and an axial resolution of 8 μm, comparable to that achieved by optical microscopy while presenting the unique contrast of optical absorption and functional information complementing other optical modalities. The 3D structure of microvasculature, including capillary networks, and even individual red blood cells have been discerned successfully in the proof-of-concept experiments on mouse bladders ex vivo and mouse ears in vivo. The potential of approximately GHz bandwidth of the microring resonator also might allow much higher resolution than shown here in microscopy of optical absorption and acoustic propagation properties at depths in unfrozen tissue specimens or thicker tissue sections, which is not now imageable with current optical or acoustic microscopes of comparable resolution.
منابع مشابه
Photoacoustic Microscopy.
Photoacoustic microscopy (PAM) is a hybrid in vivo imaging technique that acoustically detects optical contrast via the photoacoustic effect. Unlike pure optical microscopic techniques, PAM takes advantage of the weak acoustic scattering in tissue and thus breaks through the optical diffusion limit (~1 mm in soft tissue). With its excellent scalability, PAM can provide high-resolution images at...
متن کاملBoundary conditions in photoacoustic tomography and image reconstruction.
Recently, the field of photoacoustic tomography has experienced considerable growth. Although several commercially available pure optical imaging modalities, including confocal microscopy, two-photon microscopy, and optical coherence tomography, have been highly successful, none of these technologies can penetrate beyond approximately 1 mm into scattering biological tissues because all of them ...
متن کاملProspects of photoacoustic tomography.
Commercially available high-resolution three-dimensional optical imaging modalities-including confocal microscopy, two-photon microscopy, and optical coherence tomography-have fundamentally impacted biomedicine. Unfortunately, such tools cannot penetrate biological tissue deeper than the optical transport mean free path (approximately 1 mm in the skin). Photoacoustic tomography, which combines ...
متن کاملNonlinear photoacoustic microscopy via a loss modulation technique: from detection to imaging.
In order to achieve high-resolution deep-tissue imaging, multi-photon fluorescence microscopy and photoacoustic tomography had been proposed in the past two decades. However, combining the advantages of these two imaging systems to achieve optical-spatial resolution with an ultrasonic-penetration depth is still a field with challenges. In this paper, we investigate the detection of the two-phot...
متن کاملAll-optical photoacoustic microscopy
Three-dimensional photoacoustic microscopy (PAM) has gained considerable attention within the biomedical imaging community during the past decade. Detecting laser-induced photoacoustic waves by optical sensing techniques facilitates the idea of all-optical PAM (AOPAM), which is of particular interest as it provides unique advantages for achieving high spatial resolution using miniaturized embod...
متن کامل